ที่มาและความสำคัญ

กรมการข้าวร่วมกับองค์กรความร่วมมือระหว่างประเทศของเยอรมัน (GIZ) ศึกษาการปล่อย ก๊าซเรือนกระจกที่เกิดขึ้นในพื้นที่ปลูกข้าวภายใต้โครงการเพิ่มประสิทธิภาพการผลิตและลดภาวะ โลกร้อนจากการทำนา เพื่อการพัฒนาที่ยั่งยืน (Thai Rice NAMA) โครงการตลาดนำการผลิต เพื่อเกษตรกรรายย่อย (Market Oriented Smallholder Value Chains: MSVC) และโครงการ ความร่วมมือไทย-เยอรมันด้านการเปลี่ยนแปลงสภาพภูมิอากาศ ภาคเกษตรกรรม (Thai-German Climate Programme – Agriculture: TGCP- Agriculture)

โครงการ Thai Rice NAMA เป็นความร่วมมือระหว่างรัฐบาลไทยและรัฐบาลเยอรมนีที่ได้ รับงบประมาณสนับสนุนจากกองทุน NAMA Facility ซึ่งสนับสนุนประเทศกำลังพัฒนาในการ ลดผลกระทบของภาวะการเปลี่ยนแปลงสภาพภูมิอากาศและดำเนินมาดรการที่เหมาะสม วัตถุ ประสงค์หลักของโครงการเพื่อให้ประเทศไทยสามารถเพิ่มประสิทธิภาพการผลิตข้าวด้วย เทคโนโลยีที่ส่งผลต่อการลดการปล่อยก็าชเรือนกระจก ซึ่งเป็นประโยชน์ร่วม (Co-benefit) ของการพัฒนาการผลิตข้าวและชาวนา และเข้าถึงบริการเทคโนโลยีการผลิตข้าวที่ปล่อยก๊าช เรือนกระจกต่ำ

สำหรับโครงการ MSVC มีวัตถุประสงค์หลักเพื่อพัฒนาห่วงโซ่คุณค่าเชื่อมโยงเกษตรกรราย ย่อยให้เข้าถึงตลาดสินค้าข้าวยั่งยืน อันจะช่วยพัฒนาชีวิตความเป็นอยู่ของเกษตรกรรายย่อยที่ กำลังเผชิญผลกระทบจากความไม่แน่นอนของระบบตลาดข้าวในกาวะการเปลี่ยนแปลงสภาพ ภูมิอากาศ

ส่วนโครงการ TGCP- Agriculture มีวัตถุประสงค์เพื่อพัฒนาระบบตรวจวัด รายงานผล และทวนสอบ (Measurement, Reporting and Verification - MRV) ที่เหมาะสม สำหรับการปล่อยก็าซเรือนกระจก ในภาคการผลิตข้าว รวมถึงการพัฒนามาตรฐานข้าวยั่งยืน ในประเทศไทย

โครงการ Thai Rice NAMA โครงการ MSVC และ โครงการ TGCP-Agriculture ได้นำ เทคโนโลยี 4 ป. เพื่อลดการปล่อยก้าชเรือนกระจกมาปรับใช้ในพื้นที่ปลูกข้าว ได้แก่ การ ปรับระดับพื้นที่นาด้วยระบบเลเซอร์ การจัดการน้ำแบบเปียกสลับแห้ง การใส่ปุ๋ยตามค่าวิเคราะห์ดิน และการจัดการฟางและตอซัง มีการจัดทำแปลงสาชิตการใช้เทคโนโลยี 4 ป. ด้วยการสนับสนุน จากเจ้าหน้าที่ศูนย์วิจัยและศูนย์เมล็ดพันธุ์ข้าว เพื่อศึกษาปริมาณการปล่อยก้าชเรือนกระจก จากนาข้าวที่มีการปฏิบัติตามปกติและแปลงนาสาชิตที่น่า 4 เทคโนโลยีมาปรับใช้

การศึกษาการปล่อยก๊าซเรือนกระจกจากนาข้าวและจากแปลงนาสาธิต ดำเนินการด้วยวิธี เก็บตัวอย่างก๊าซจากแปลงสาธิตที่ตั้งอยู่ในพื้นที่เป้าหมาย 6 จังหวัด (ภาคกลาง) ของโครงการ Thai Rice NAMA ได้แก่ ชัยนาท อ่างทอง ปทุมธานี สิงห์บุรี อยุธยา สุพรรณบุรี และพื้นที่ เป้าหมายของโครงการ MSVC (ภาคตะวันออกเฉียงเหนือ) ได้แก่ อุบลราชธานี ซึ่งมีขั้นตอน ดำเนินการดังต่อไปนี้

กรมการข้าวร่วมกับองศ์กรความร่วมมือระหว่างประเทศของเยอรมัน (GIZ) และสถาบันวิจัยข้าวนานาชาติ (IRRI) ในการพัฒนาสมรรถนะบุคลากร กรมการข้าวผ่านการฝึกอบรม วิธีการเก็บตัวอย่างก็าซและการคำนวณการ ปล่อยก็าซเรือนกระจก รวมไปถึงพัฒนาคู่มือทางวิชาการต่าง ๆ ที่เกี่ยวข้อง ความร่วมมือดังกล่าวจะช่วยส่งเสริมหน่วยงานไทยในการพัฒนาระบบการ ตรวจวัด รายงานผล และทวนสอบ (MRV) การปล่อยก๊าซเรือนกระจกจาก นาข้าวตามมาตรฐานระหว่างประเทศ และใช้ระบบดังกล่าวรับมือกับปัญหา การเปลี่ยนแปลงสภาพภูมิอากาศต่อไป

> กลุ่มการเกษตรและความปลอดภัยด้านอาหาร องค์กรความร่วมมือระหว่างประเทศของเยอรมัน (GIZ) 39/1 ถนนสุขุมวิท 13 แยก 1-1 คลองเดยเหนือ วัฒนา กทม. 10110 โทร. 0 2255 4202

https://www.asean-agrifood.org

@farmercareearth

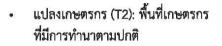
การศึกษ[.] โดยค:

Sustainable Agrifood System in ASEAN

GIZ - เกษตรกรรักโลก

การศึกษาการปล่อยก๊าซเรือนกระจกจากนาข้าว

โดยความร่วมมือระหว่ามกรมการข้าวและอมค์กร ความร่วมมือระหว่ามประเทศขอมเยอรมัน (GIZ)



1. การเลือกพื้นที่แปลงศึกษา

เลือกพื้นที่แปลงศึกษาที่เหมาะสม เพื่อการปฏิบัติตามเทคโนโลยี 4 ป. และสะดวกในการเก็บ ตัวอย่างก๊าซจากแปลงนาตลอดฤดูปลูก โดยแปลงนาศึกษาจะประกอบด้วย

 แปลงสาธิต (T1): พื้นที่นาสำหรับทำแปลงสาธิตการใช้ 4 เทคโนโลยี เพื่อลดการปล่อยก๊าซเรือนกระจกในนาข้าวจากคำแนะนำทาง วิชาการของกรมการข้าว ได้แก่ การปรับระดับพื้นที่นาด้วย ระบบเลเซอร์ การจัดการน้ำแบบเปียกสลับแห้ง การใส่ปุ๋ย ตามค่าวิเคราะห์ดิน และการจัดการฟางและตอชัง

2. การเก็บตัวอย่างดิน

ก่อนที่จะเตรียมดินเพื่อปลูกข้าว มีการเก็บตัวอย่างดินจากแปลงศึกษาทั้ง 2 แปลง (T1 และ T2) เพื่อวิเคราะห์องค์ประกอบทางเคมีของดิน โดยมีค่าต่างๆ ที่เกี่ยวข้องที่นำมาวิเคราะห์ ได้แก่

- สมบัติของดิน (soil characteristics)
- ความเป็นกรด-ด่างของดิน (soil pH)
- อินทรีย์วัตถุ
 (organic matter OM)
- ในโตรเจนทั้งหมด (total nitrogen - N)
- ฟอสฟอรัสที่เป็นประโยชน์ต่อพืช (available phosphorus - P)
- โพแทสเซียมที่แลกเปลี่ยนได้ในดิน (exchangeable potassium - K)
- ค่าการนำไฟฟ้า
 (Electric conductivity EC)

3. การติดตั้งกล่องเก็บตัวอย่างก๊าซในแปลงนา

ในการเก็บตัวอย่างก้าชในแปลงนา จำเป็นจะต้องติดตั้งสะพานคนเดินที่แข็งแรงและคงทน ต่อแดดและฝนไว้ตลอดฤดูปลูกข้าว เพื่อวางทางเดินให้กับผู้ปฏิบัติงานสามารถเข้าไปเก็บตัวอย่าง ก๊าซในแปลงศึกษาได้อย่างสะดวก และไม่กระทบต่อการเจริญเติบโตของต้นข้าว ในแปลงศึกษา ทั้ง 2 แปลง โดยจะวางสะพานคนเดินในจุดเชื่อมต่อระหว่างกล่องเก็บตัวอย่างก๊าซ ซึ่งการ เก็บตัวอย่างก๊าซจะดำเนินการ 3 กล่อง (3 ซ้ำ) จากแต่ละแปลงศึกษา (T1 และ T2) สำหรับ ทำการวัดค่าก๊าซซ้ำ

สำหรับการวางกล่องเก็บก๊าซ ให้นำกล่องเก็บตัวอย่างส่วนล่าง (กล่องล่าง) วางไว้ที่แปลงนาก่อนและเทน้ำใส่ในกล่องเพื่อป้องกัน การรั่วไหลของก๊าซ จากนั้นนำกล่องเก็บตัวอย่างส่วนบน (กล่องบน) ที่มีฝาปิดมิดชิดวางลงด้านบนต่อจากกล่องล่าง และเสียบเทอร์โมมิเตอร์ลงในจุดที่กำหนดเพื่อวัดอุณหภูมิ ที่แน่นอน

4. การเตรียมอุปกรณ์ก่อนการเก็บตัวอย่างก๊าซจากแปลงนา

ก่อนการเก็บตัวอย่างก๊าซในพื้นที่ เจ้าหน้าที่ห้องปฏิบัติการจะต้อง ทำให้ขวดเก็บตัวอย่างก๊าซ (vials) อยู่ในสภาพสุญญากาศ โดย เริ่มจากนำไปวางในโถแก้วสุญญากาศและปิดผนึก โดยใช้ ฝาอะลูมิเนียม หลังจากนั้น ให้เขียนระบุข้อมูลที่จำเป็น บนขวดเก็บตัวอย่างก๊าซ ได้แก่ สถานที่แปลงศึกษา วันที่เก็บตัวอย่าง วิธีการทดลอง และระยะเวลาเก็บ ตัวอย่างแต่ละครั้ง

5. ระยะการเก็บตัวอย่างก๊าซจากแปลงนา

เก็บตัวอย่างก๊าซในทุกๆ 7 วัน หรือทุกสัปดาห์ ตลอดฤดูปลูกข้าว โดยเริ่มเก็บครั้งแรก หลังปลูกข้าว ได้ 7 วัน (หลังจากหว่านข้าวหรือปักดำข้าว) และเก็บ ตัวอย่างก๊าซครั้งต่อไป เรื่อยๆ จนถึงช่วงการเก็บเกี่ยว

6. วิธีการเก็บตัวอย่างก๊าซจากแปลงนา

ให้ใช้หลอดฉีดยาพลาสติก (Syringe) ดูดก๊าซออกจากกล่อง ปริมาณ 35 มิลลิลิตร จากนั้น ฉีดก๊าซที่เก็บมาได้ลงในขวดเก็บตัวอย่างก๊าซสุญญากาศที่เตรียมไว้ ซึ่งจำนวนครั้งของการเก็บ ตัวอย่างก๊าซแต่ละกล่อง คือ ในทุกสัปดาห์จะเก็บตัวอย่างก๊าซ 5 ครั้ง เริ่มตั้งแต่นาทีที่ 0 6 12 20 และ 30 สำหรับการเก็บตัวอย่างก๊าซแต่ละกล่อง อ้างอิงตามมาตรฐานของสถาบันวิจัยข้าว ระหว่างประเทศ (IRRI) ตามการศึกษาของ Minamikawa et al. (2015)

หลังจากเก็บตัวอย่างก๊าซเสร็จแล้ว ให้บรรจุตัวอย่างก๊าซลงในกล่องโฟมที่ปิดมิดซิด และส่งต่อ ไปยังห้องปฏิบัติการตรวจวัดก๊าซเรือนกระจก ซึ่งปัจจุบันสามารถดำเนินการได้ที่ศูนย์วิจัยข้าว ปราจีนบุรี ศูนย์วิจัยข้าวซัยนาท ศูนย์วิจัยข้าวอุบลราชธานี และสถาบันวิทยาศาสตร์ข้าวแห่งชาติ (สุพรรณบุรี)

7. การวิเคราะห์ก๊าซด้วยเครื่องวัดก๊าซ

ตัวอย่างก๊าซจากแปลงนาที่ส่งไปยังห้องปฏิบัติการ จะมีการใช้เครื่องวัดก๊าซ (Gas Chromatography หรือ GC) ตรวจวัดตัวอย่างก๊าซที่เก็บได้ โดยจะฉีดตัวอย่างก๊าซลงในเครื่อง GC เพื่อ ประเมินความเข้มข้นของก๊าซเรือนกระจก และรายงานผลการวัดค่าก๊าซจากเครื่อง GC ให้ทราบ ซึ่งจะนำไปใช้ในการคำนวณการปล่อยก๊าซเรือนกระจกในแปลงศึกษาต่อไป โดยใช้เครื่องมือที่ เรียกว่า SECTOR for Rice (Spatially-aggregated Emissions CalculaTOR for Rice)

